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CONSISTENCY AND GENERAL TRUNCATED

MOMENT PROBLEMS

Seonguk Yoo*

Abstract. The Truncated Moment Problem (TMP) entails find-
ing a positive Borel measure to represent all moments in a finite
sequence as an integral; once the sequence admits one or more such
measures, it is known that at least one of the measures must be
finitely atomic with positive densities (equivalently, a linear com-
bination of Dirac point masses with positive coefficients). On the
contrary, there are more general moment problems for which we
aim to find a “signed” measure to represent a sequence; that is, the
measure may have some negative densities. This type of problem
is referred to as the General Truncated Moment Problem (GTMP).
The Jordan Decomposition Theorem states that any (signed) mea-
sure can be written as a difference of two positive measures, and
hence, in the view of this theorem, we are able to apply results for
TMP to study GTMP. In this note we observe differences between
TMP and GTMP; for example, we cannot have an analogous to
the Flat Extension Theorem for GTMP. We then present concrete
solutions to lower-degree problems.

1. Introduction

The moment problem is a special class of the inverse problem which
naturally occurs in many areas of science and mathematics. While the
classical theory of moments has been studied for over a century, the
systematic study of truncated moment problems began only two decades
ago.
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We now state the definition of the (bivariate) truncated moment prob-
lem: Consider a doubly indexed finite sequence of real numbers (of order

2n), β ≡ β(2n) = {β00, β10, β01, · · · , β2n,0, β2n−1,1, · · · , β1,2n−1, β0,2n}
with β00 ̸= 0. We call the terms in the sequence moments inspired by
T. J. Stieltjes. The truncated real moment problem entails to find a
positive Borel measure µ supported in the real plane R2 such that

(1.1) βij =

∫
xiyj dµ (i, j ∈ Z+, 0 ≤ i+ j ≤ 2n).

The measure µ is referred to as a representing measure for β. In a
similar way, the full moment problem for an infinite sequence β∞ is
defined. J. Stochel showed that β∞ has a representing measure on a
closed set K if and only if β(2n) has a representing measure supported in
K for each n [24]. Thus, it is necessary to find a solution of TMP for all
orders to solve the full moment problem. On the other hand, the general
truncated moment problem calls for a (signed) measure satisfying (1.1);
to avoid any confusion, a representing measure for TMP is referred to
as a “positive” measure through this article and one for GTMP is said
to be a measure. As a univariate moment problem, R. Boas showed any
infinite sequence of real numbers admits a signed measure supported in
[0,∞) [4]. Even though he did not discuss, it seems possible to find
an algorithm for a formula of a measure through the construction in the
proof of Boas’ result. However, there is still no well-formulated algorithm
to cover this issue for both infinite or finite moment sequences; that is,
even under the presence of measures, we do not know how to write a
closed form of a measure.

For better understanding of GTMP, we need to review TMP and the
following are basic notions about TMP.

1.1. Definitions and Notations

We now define the (real) moment matrix M(n) ≡ M(n)(β) of β as

below: M(n) is a square matrix of size
(
n+2
2

)
. The rows and columns of

M(n) are labeled with monomials in the following lexicographical order:
1, X, Y,X2, XY, Y 2, · · · , Xn, · · · , Y n. The entry in the row XiY j and
the column XkY l is the moment βi+k,j+l, for example, M(2) is written
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as

1 X Y X2 XY Y 2

1
X
Y

X2

XY
Y 2


β00 β10 β01 β20 β11 β02
β10 β20 β11 β30 β21 β12
β01 β11 β02 β21 β12 β03
β20 β30 β21 β40 β31 β22
β11 β21 β12 β31 β22 β13
β02 β12 β03 β22 β13 β04


Notice that M(n) is a symmetric, bolck Hankel matrix. We will see

algebraic properties of M(n) make great contributions for the existence
of a positive representing measure for β.

We will write column dependence relations in M(n) using these labels
and will see that the relations behave like polynomials, and produce
important necessary conditions for the existence of a positive measure.

In detail, we define an assignment from Pn (the set of 2-variable
polynomials whose degree is at most n) to CM(n) (the column space of

M(n)); given a polynomial p(x, y) ≡
∑

ij aijx
iyj , we let p(X,Y ) :=∑

ij aijX
iY j (so that p(X,Y ) ∈ CM(n)). This map will deliver useful

information for TMP; for example, the column relations will be used to
identify the location of the support of a positive representing measure
(see Subsection 1.2).

Through the Jordan Decomposition Theorem, we may adopt the re-
sults for TMP to study GTMP and for the perspective, basic necessary
conditions for TMP are to be introduced briefly:

1.2. Necessary Conditions for TMP

If β has a positive representing measure µ, then we can compute that
for a polynomial p(x, y) =

∑n
i, j=0 aijx

iyj

0 ≤
∫

p(x, y)2 dµ =
∑
i,j,k,l

aijakl

∫
xi+kyj+l dµ =

∑
i,j,k,l

aijaklβi+k, j+l,

which is equivalent that M(n) is positive (semidefinite), denoted as
M(n) ≥ 0. Even though it was the most basic, important necessary
condition for TMP, we obviously know that the positivity is no longer
required for GTMP.
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Let Z(p) denote the zero set of a polynomial p and define the algebraic
variety V of β or M(n) by

(1.2) V ≡ V(β) ≡ V(M(n)) :=
∩

p∈Pn, p(X,Y )=0

Z(p).

For the presence of a positive measure, it must be true from Proposition
3.1 in [7] that supp µ ⊆ V(β) and this inclusion determines where atoms
of a positive measure lie. While we cannot enjoy this inequality for
GTMP (that is, some atoms of a measure can be outside of the algebraic
variety; see the example in Section 2.2), it is still possible to find a
measure supported in the algebraic variety of GTMP (see Subsection
2.1) and we will see concrete conditions for the existence of a measure
whose support is in the algebraic variety. For computing the algebraic
variety, we note that if p̂ denotes the column vector of coefficients of
p(x, y), then we know p(X,Y ) = M(n)p̂; in other words, p(X,Y ) = 0
if and only if p̂ ∈ ker M(n). Thus, we run the Gauss elimination
with M(n) and diagnose the column relations; after regarding them as
polynomials, we need to find the common zero set of the polynomials.

Another necessary condition called the variety condition is that rank
M(n) ≤ card V; we will prove this is valid for GTMP as well (see
Proposition 2.2). We need more necessary conditions to study a higher
order moment problem:

Definition 1.1. Let M(n) be a moment matrix with the algebraic
variety V ≡ V(M(n)). Also, let Λ ≡ Λβ be the Riesz functional that
maps a polynomial p(x, y) :=

∑n
i,j=0 aijx

iyj ∈ P2n to the linear combi-

nation of moments
∑n

i,j=0 aijβij . Then we say that:

(i) β or M(n) is weakly consistent (on V) if p ∈ Pn and p|V ≡ 0 ,
then Λ(p) = 0;

(ii) β or M(n) is consistent (on V) if p ∈ P2n and p|V ≡ 0 , then
Λ(p) = 0.

The main results in [10] says that the consistency on V is sufficient
for the extremal case (rank M(n) = card V) and also we know that the
consistency cannot be replaced by the weaker necessary condition that
M(n) is recursively generated ; that is,

if p(X,Y ) = 0, then (p q)(X,Y ) = 0, for all q with deg(p q) ≤ n. (RG)

More importantly for this article, the consistency is known as a nec-
essary and sufficient condition to have a measure; however, checking the
consistency cannot be done in a simple manner. In Section 5 we will
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establish the consistency of the quartic (n = 2) GTMP with the aid of
the Division Algorithm.

1.3. Flat Extension

Probably, the most efficient and concrete solution to TMP would be
the Flat Extension Theorem [7, Theorem 5.13]. It says that a positive
M(n) admits a flat (rank-preserving, positive) extension M(n+1) if and
only if β has a positive rank M(n)-atomic measure. Thus, we build a
positive extension allowing several new moments (parameters) and try
to keep its rank the same. Observe that an moment matrix extension

M(n+1) can be written asM(n+1) =

(
M(n) B
B∗ C

)
, for some matrices

B and C.
Furthermore, we can find atoms and densities of a positive repre-

senting measure explicitly via the results related to the Flat Extension
Theorem [7]. For a solution of GTMP we are naturally attracted to con-
sider that flatness of M(n) may imply the consistency of M(n). We have
to know, however, flatness cannot guarantee the existence of a measure
supported in the algebraic variety (see Section 2.2).

Note also that it looks easy to find a flat extension in principle but
keeping the moment matrix structure in M(n + 1) brings many diffi-
culties; although we may use a computer algebra like Mathematica or
Matlab, the construction of M(n + 1) is not feasible for most TMP of
n ≥ 3 due to memory overflow.

2. The Consistency and a Measure

We now discuss topics related to the consistency of a moment matrix
and investigate properties of a measure of a consistent moment sequence.
The next Lemma shows that the consistency is strong enough to yield a
(finitely atomic) measure, which may have some negative densities.

Lemma 2.1. [10, Lemma 2.3] Let L : P2n → R be a linear functional
and let V ⊆ R2. The following statements are equivalent:

(i) There exist α1, . . . , αm ∈ R and there exist w1, . . . , wm ∈ V such
that

(2.1) L(p) =
m∑
i=1

αip(wi)

for all p ∈ P2n.
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(ii) If p ∈ P2n and p|V ≡ 0, then L(p) = 0.

If L is the Riesz functional of the moment sequence β and if V is the
algebraic variety of M(n), then Lemma 2.1(ii) is just the consistency
condition. While it seems like Lemma 2.1 gives a concrete solution to
GTMP, we should indicate that checking the consistency is a highly
nontrivial process. We have to see that the Riesz functional of all the
polynomials vanishing on the algebraic variety is assigned to zero. This
test requires certain techniques to represent all the polynomials that
vanish on the algebraic variety.

The next result shows an import necessary condition for TMP, the
variety condition, is also valid for GTMP:

Proposition 2.2. If β is consistent on the nonempty V(β), then
rank M(n)(β) ≤ card V(β).

Proof. Let V = {(xi, yi)}vi=1 for some v > 0 and denote the general-
ized Vandermonde matrix as EV ; that is,

(2.2) EV =


1 x1 y1 x21 x1y1 y21 · · · xn1 · · · yn1
1 x2 y2 x22 x2y2 y22 · · · xn2 · · · yn2
...

...
...

...
...

...
. . .

...
. . .

...
1 xv yv x2v xvyv y2v · · · xnv · · · ynv


In the same fashion as we did for M(n), we label the columns of EV
with monomials in the lexicographical order: 1, X, Y,X2, XY, Y 2,. . . ,
Xn, . . . , Y n. If rank M(n) = r, the column relations in M(n) can be
written as p1(X,Y ) = 0, . . . , pη(X,Y ) = 0, where η = (n+1)(n+2)/2−
r. Notice that all of the column relations p1(X,Y ) = 0, . . . , pη(X,Y ) =
0 must hold in EV as well.

Suppose r > v. Then EV must have additional column relation other
than pi(X,Y ) = 0’s. Thus, there is a new polynomial q(x, y) ∈ Pn that
vanishes on V. Observe that the leading term of q(X,Y ) is not in the
basis of the column space of M(n). Since β is consistent on V(β), we
know that Λ(xiyjq) = 0 for i, j ∈ Z+ and 0 ≤ i + j ≤ n, which brings
another column relation q(X,Y ) = 0 in CM(n), and hence the rank of
M(n) becomes r − 1. This is a contradiction.

2.1. Jordan Decomposition Theorem

The Jordan decomposition theorem states that every measure µ has
a unique decomposition into a difference µ = µ+ − µ− of two positive
measures µ+ and µ−, at least one of which is finite. After rearranging
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the terms in (2.1) by the sign of densities, we can write a measure of a
consistent M(n) as

(2.3) µ =

ℓ∑
k=1

ρkδwk
−

s∑
k=ℓ+1

ρkδwk
,

where ρk > 0 for all k = 1, . . . , ℓ; we denote the first summand in (2.3)
as µ+ and the second as µ−. Due to this fact, a bound of the cardinality
of the support of a measure is established:

Proposition 2.3. A minimal measure for β which is consistent on
V(β) is at most (2n+ 1)(2n+ 2)-atomic.

Proof. If M(n) is consistent with a measure µ = µ+−µ− of two posi-
tive (finite) measures µ+ and µ−, we may write M(n) = M [µ+]−M [µ−],
where each term is a moment matrix generated by the corresponding
positive measure of the same size as M(n). A result [2, Theorem 2] for
TMP found by C. Bayer and J. Teichmann showed that the cardinality
of the support of a positive measure is at most dimP2n in the presence
of a positive measure for a moment matrix whose order is n. Since
M [µ+] and M [µ−] have a positive measure, it follows that a minimal
measure for each moment matrix is at most dimP2n atomic. Therefore,
we conclude that card supp µ ≤ 2(dimP2n) = (2n+ 1)(2n+ 2).

2.2. Differences between TMP and GTMP

Recall that in the presence of a positive representing measure µ for a
positive M(n)(β), Proposition 3.1 in [7] states that

p̂ ∈ kerM(n)(β) ⇐⇒ p(X,Y ) = 0 ⇐⇒ supp µ ⊆ Z(p).

This result tells us that the atoms of a positive measure µ must be con-
tained in V(M(n)), but the following example shows such an argument
is no longer valid for GTMP; consider

(2.4) M(1) ≡ M(1)
(
β(2)

)
=

 −1 −16 −4
−16 −94 −10
−4 −10 2

 .

M(1) has a single column relation Y = −(4/3)1+(1/3)X and we can eas-

ily check by the upcoming Lemma 3.5 that β(2) is consistent on V(M(1)),
and hence we can find a measure supported in Z(p) ⊆ V; will readily see
this claim in Section 4. However, one of representing measures for M(1)
is ν = δ(−2,1)+δ(−2,−2)−δ(1,1)−δ(10,1) but supp ν ̸⊆ Z(y+4/3−(1/3)x).
In other words, a measure may have atoms outside of the algebraic vari-
ety. This example motivates us to find some conditions when a moment
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sequence has a measure supported in the algebraic variety. Main results
in Section 5 will show such conditions.

We recall that a positive (semidefinite) M(n) is a flat extension of a
positive M(n−1) if and only if M(n) has a unique positive rank M(n)-
atomic representing measure. However, the coming example shows flat-
ness of M(n) does not guarantee the existence of a measure supported
in V for GTMP; consider

(2.5) M(2) =


1 0 0 1 0 −1
0 1 0 0 0 1
0 0 −1 0 1 0
1 0 0 1 0 −1
0 0 1 0 −1 0
−1 1 0 −1 0 2



row reduction //


1 0 0 1 0 −1
0 1 0 0 0 1
0 0 1 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

We see rank M(1) = rank M(2) = 3 and M(2) has 3 column rela-
tions: X2 = 1, XY = −Y , and Y 2 = −1+X. Since the 3 polynomials
of column relations intersect only at (1, 0), it follows that M(2) does
not satisfy the inequality in Proposition 2.2; hence, M(2) is not con-
sistent on V(M(2)) (equivalently, it has no measure whose support is
contained in V(M(2))) even if it is flat. This example suggests that
building a rank-preserving extension of M(n) would not be adaptable
to solve GTMP while it is the most efficient tool for TMP. We may
also use a direct approach to see M(2) does not admit a measure sup-
ported in V: It is not difficult to check that all the polynomials van-
ishing on the variety {(1, 0)} could be generated by x − 1 and y only.
For the consistency of M(2), we must have Λ(xiyj(x − 1)) = 0 and
Λ(xiyj ·y) = 0 for i, j ∈ Z+, 0 ≤ i+ j ≤ 3 but this is not true; explicitly,
Λ(x− 1) = β10 − β00 = −1 ̸= 0.

2.3. Degree-One Transformations

We introduce an affine transformation (called the degree-one transfor-
mation) through which we can classify TMP’s as a group of equivalent
curves. For example, any moment matrix with a conic column relation
can be translated into a moment matrix with one of the column relations
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X2 + Y 2 = 1, X2 − Y 2 = 1, Y = X2, XY = 1, or XY = 0 as in [8].
Hence, it allows us to consider much smaller groups of TMP; even we
can make a given TMPmuch simpler with an appropriate transformation
(see [8]). We can show that the degree-one transformation is valid for
GTMP as well. The complex version of the transformation is described
in [8, Proposition 1.7] and it is also known, in the same paper, that there
is an equivalence between the complex truncated moment problem and
the real truncated moment problem; thus, we may use the real version
of the transformation for the study of GTMP. Here is the description of
the degree-one transformation of the real version; for a, b, c, d, e, f ∈ R,
ae − bd ̸= 0, let φ1(x, y) := ax + by + c, φ2(x, y) := dx + ey + f , and

φ(x, y) := (φ1(x, y), φ2(x, y)). Given a real moment sequence β ≡ β(2n),

define a new moment sequence β̃ by β̃ij := Λβ(φ
i
1 φ

j
2) (i, j ∈ Z+,

0 ≤ i + j ≤ 2n), where Λβ denotes the Riesz functional associated
with β. We can easily verify that Λβ̃(p) = Λβ (p ◦ φ) for every p ∈ P2n

and the invariance between moment problems is described as follows:

Proposition 2.4. [8, cf. Proposition 1.7] (Invariance under degree-

one transformations.) Let M(n) and M̃(n) be the moment matrices

associated with β and β̃, and let Jp̂ := p̂ ◦ φ (p ∈ P2n). Then the
following are true:

(i) M̃(n) = JTM(n)J ;
(ii) J is invertible;

(iii) rank M̃(n) = rank M(n);
(iv) The formula µ = µ̃ ◦ φ establishes a one-to-one correspondence

between the sets of measures for β and β̃, which preserves mea-
sure class and cardinality of the support; moreover, φ(supp µ) =
supp µ̃;

(v) For p ∈ Pn, p(X̃, Ỹ ) = JT ((p ◦ φ) (X,Y )).

The final topic of this section is the Division Algorithm from the real
algebraic geometry. The algorithm will make main contributions to the
results in Section 4 and 5. We will be able to construct a structure
theorem for polynomials that vanish on the algebraic variety.

Theorem 2.5 (Division Algorithm). [5] Fix a monomial order > on
Zn
+, and let F = (f1, · · · , fs) be an ordered s-tuple of polynomials in

R[x1, · · · , xn]. Then every f ∈ R[x1, · · · , xn] can be written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ R[x1, · · · , xn], and either r = 0 or r is a linear combination
of monomials with coefficients in R, none of which is divisible by any
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leading terms of f1, · · · , fs. We call r a remainder of f on division by
F . Furthermore, if aifi ̸= 0, then we have

multideg(f) ≥ multideg(aifi).

3. Vandermonde Matrix Method to Check the Consistency

In this section, we will collect earlier methods developed for checking
the consistency since these results provide an insight into a new approach
using the Division Algorithm. We adopt the notations in [14] and remark
that these arguments cover only bivariate moment problems even though
the result works for multidimensional moment problems:

• Columns of M(n) are labeled with the monomials XiY j ∈ Pn

(i, j ∈ Z+, 0 ≤ i+ j ≤ n) in degree-lexicographical order;
• V := {(x1, y1), . . . , (xs, ys)} is a finite subset in R2;
• Wm[V ] is a matrix with s rows and with columns labeled with
XiY j . (Note that the entry of Wm[V ] in the row k (1 ≤ k ≤ s)

and the column XiY j is xiky
j
k, and hence Wm[V ] is a Vandermonde

matrix of points in R2);
• Um[V ] := Wm[V ]T ;

• τ(m) := dimPm =

(
m+ 2
m

)
;

Given M(n)(β), let τ ≡ τ(2n), r = rank M(n), v = card V(M(n)), and
set Lβ := (β00, β10, β01, . . . , β2n,0, . . . , β0,2n)

T ∈ Rτ . Let B denote a basis
of CM(n), the column space of M(n). For the case when V ⊆ V(M(n)),
let WB[V ] denote the compression of W2n[V ] to columns in B and let
UB[V ] ≡ WB[V ]T . After understanding the proof of Lemma 2.1 carefully,
we can get the following results:

Theorem 3.1. [14, Theorem 3.2] If a positive M(n) has a flat exten-
sion, then UB[V ] is invertible for a subset V of V(M(n)).

Proposition 3.2. [14, Proposition 3.6 and 3.8] Let v < ∞. Then

(i) β is consistent if and only if Lβ ∈ Ran U2n[V(M(n))].
(ii) β is weakly consistent if and only if RanM(n) ⊆ RanUn[V(M(n))];

equivalently, there exists a matrix Z such thatM(n) = Un[V(M(n))]Z.

For the extremal moment problems (r = v), we have a useful way to
check weakly consistency and it is to be used for a main result later:

Lemma 3.3. [10, Lemma 4.1] The following are equivalent for an
extremal β:
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(i) p ∈ Pn and p|V ≡ 0 =⇒ p(X,Y ) = 0 in CM(n);
(ii) For any basis B of CM(n), UB is invertible;
(iii) There exists a basis B of CM(n) such that UB is invertible.

An important necessary condition (RG) is somewhat rigid in a sense;
once there is a lower-order column relation, many of higher-order rela-
tions have to be determined. For some cases, all the column relations
may be originated from a single polynomial p and the algebraic variety
is just Z(p); the case ends up with an infinite variety. Moreover, if p is
irreducible, the consistency of M(n) is immediate as follows:

Definition 3.4. For p ∈ Pn, M(n) is p-pure if the only dependence
relation in CM(n) are those of the form (pq)(X,Y ) = 0 for some q ∈
Pn−deg p.

Lemma 3.5. [15, Lemma 3.1] β ≡ β(2n) is consistent ifM(n) is p-pure,
where deg p(x, y) = n, p is irreducible in R[x, y], and Z(p) is infinite.

In summary, if the algebraic variety is finite or if all the column re-
lations are determined by an irreducible polynomial, then the preceding
results would be applicable.

4. General Quadratic Moment Problem

In order to discuss a way of writing a formula of a measure, we con-
sider the rank-one decomposition method. We try to decompose a con-
sistent moment matrix as a linear combination of rank-one moment ma-
trices. Indeed, if M(n) is consistent with an r-atomic measure, then we
may write

M(n) =

r∑
i=1

ρiviv
T
i ,

where ρi ∈ R, vi := (1, xi, yi, . . . , x
n
i , x

n−1
i yi, . . . , xiy

n−1
i , yni )

T , and
(xi, yi) ∈ R2 for i = 1, . . . , r.

We now classify M(1) in terms of its rank and present a solution:

Theorem 4.1. Suppose β00 ̸= 0 and rank M(1) = r. Then:

(i) r = 1 if and only if M(1) admits a unique 1-atomic measure;
(ii) r = 2 if and only if M(1) admits a 2-atomic measure;
(iii) If r = 3, then M(1) admits a 3-atomic measure.
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Proof. (i) The backward implication is trivial and to prove the for-
ward; suppose rank M(1) = 1. Without loss of generality, we may
assume the columns X and Y are linearly dependent on the first
column 1. Now we can write

M(1) =

β00 β10 β01
β10 β20 β11
β01 β11 β02

 = β00

1 a b
a c d
b d e

 ,

where a, b, c, d, and e are obviously defined. Since the column X
in M(1) is dependent on 1, the column relation must be X = a1,
which implies that c = a2 and d = ab; similarly, the other column
relation must be Y = b1 and this relation determines that d = b2.
Thus, M(1) = β00(1, a, b)

T (1, a, b) and the sequence has the unique
measure β00 δ(a,b).

(ii) The sufficiency is clear and we try to prove the necessity. Since
rank M(1) = 2, we can find a linear column relation p(X,Y ) = 0
in CM(1). We observe M(1) is p-pure and from Lemma 3.5 we
know that M(1) admits a measure. Applying the invariance under
the degree-one transformation, it is possible to convert the linear
column relation p(X,Y ) = 0 to Y = 0; that is, it is enough to
consider the case

M(1) =

β00 β10 0
β10 β20 0
0 0 0

 .

We use the rank-one decomposition method to see M(1) has a 2-
atomic measure. The algebraic variety of M(1) is the line y =
0 and we select a point from the line, say (x1, 0). Consider a
column vector v1 = (1, x1, 0)

T and we build a rank-one moment

matrix P1 := v1v
T
1 . Now we define M̃(1) := M(1) − ρ1P1 for

some ρ1 ∈ R. In order to have a minimal (rank M(2)-atomic)

representing measure, we force rank M̃(1) to be 1; a calculation
shows ρ1 = (β2

10−β00β20)/(−β20+2β10x1−β00x
2
1) is such a choice.

Since the rank of M̃(1) is now 1, we can apply the proof (i) and get

that the unique representing measure of M̃(1) is ρ2δ(x2,0), where

ρ2 = (β2
10 − 2β00β10x1 + β2

00x
2
1)/(β20 − 2β10x1 + β00x

2
1) and x2 =

(β20 − β10x1)/(β10 − β00x1). Thus M(1) has a 2-atomic measure
ρ1δ(x1,0) + ρ2δ(x2,0), where x1 must be different from a solution of
the equations:

β20 − 2β10x1 + β00x
2
1 = 0 and β10 − β00x1 = 0.
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(iii) A nonsingular moment matrix has no column relation, which means
the algebraic variety is the entire plane. The only polynomial van-
ishes throughout the plane is the zero polynomial; the consistency
is established immediately from this fact.

To find a 3-atomic measure, we get through 2 steps of the rank
reduction. We first take an arbitrary point (p, q) (indeed, (0, 0)
would be efficient) and represent M(1) as

M(1) = M̃ + uM [δ(p,q)],

where M [δ(p,q)] is a moment matrix generated by δ(p,q). Find then

a value of u such that rank M̃(1) = 2; once you identity a column

relation in M̃(1), the rest work is entirely similar to the computa-
tion given in the proof of (ii).

These complete the proof of Theorem 4.1.

Example 4.2. We illustrates how to find a measure of the sequence
in (2.4):

M(1) =

 −1 −16 −4
−16 −94 −10
−4 −10 2


Observe that rank M(1) = 2 and the unique column relation is Y =
(−4/3)1+ (1/3)X; by Theorem 4.1 (ii), M(1) has a 2-atomic measure.
We would like to see there are measures supported in the algebraic va-
riety of M(1). Selecting a point (a, (a − 4)/3) for some real a, we may
write

(4.1) M(1) = M̃(1) + u

 1 a a−4
3

a a2 a(a−4)
3

a−4
3

a(a−4)
3

(a−4)2

9


for some u. In order to have a minimal (rank M(2)-atomic) repre-

senting measure, we must have rank M̃(1) = 1; a calculation shows

rank M̃(1) = 1 if and only if u = 162/(a2 − 32a + 94). If we take
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u = 162/(a2 − 32a+ 94), then

M(1) =
−(a− 16)2

a2 − 32a+ 94


1 2(8a−47)

a−16
2(2a−5)
a−16

2(8a−47)
a−16

4(8a−47)2

(a−16)2
4(2a−5)(8a−47)

(a−16)2

2(2a−5)
a−16

4(2a−5)(8a−47)
(a−16)2

4(2a−5)2

(a−16)2


+

162

a2 − 32a+ 94

 1 a a−4
3

a a2 a(a−4)
3

a−4
3

a(a−4)
3

(a−4)2

9

 .

We just now got the minimal measure µ = −(a−16)2

a2−32a+94
δ( 2(8a−47)

a−16
,
2(2a−5)
a−16

) +
162

a2−32a+94
δ(a,a−4

3 ).

5. General Quartic Moment Problem

We again classify M(2) with its rank and present conditions about
M(2) when it admits a measure supported in V(M(2)). In the sequel,
we assume β00 ̸= 0.

5.1. The Case When rank M(2) = 1rank M(2) = 1rank M(2) = 1

We can verify that the (RG)-condition is sufficient for the existence
of the 1-atomic measure. For, if X = A1 and Y = B1 are the two linear
column relations in M(2), then the conic relations must be X2 = A21,
XY = AB1, and Y 2 = B21. We can imitate the proof of the case when
rank M(1) = 1 and confirm the result.

5.2. The Case When rank M(2) = 2rank M(2) = 2rank M(2) = 2

Since (RG) is a necessary condition for the existence of a measure
supported in V(M(2)), the moment matrix M(2) cannot help but have
a linear column relation. The only possible two cases are that the basis
of CM(2) is {1, X} or {1, Y }. By virtue of the degree-one transformation

X = Ỹ and Y = X̃, we know that the moment problems with these
two bases are equivalent; it is sufficient to consider the first case, and
so we assume now the basis of CM(2) is {1, X}. Since the column X2 is

linearly dependent, we write X2 = k11 + k2X for some k1, k2 ∈ R. In
order to satisfy the variety condition, the zero set of the corresponding
polynomial to the column relation must be a product of two vertical
lines. In other words, the quadratic equation x2 = k1 + k2x must have
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two different roots. We may write the column relation in X2 as in the
following result for computational ease:

Theorem 5.1. Let {1, X} be the basis of CM(2). If the first two

column relations are written as Y = A1 + BX and X2 = (C +D)X −
(CD)1 with (C+D)2−4CD > 0 and C ̸= D, then M(2) has a measure
supported in V(M(2)) if and only if M(2) is (RG); that is, the other two
column relations in CM(2) are XY = AX +BX2 and Y 2 = AY +BXY .

Proof. (=⇒) It is trivial since the consistency implies (RG).

(⇐=) We first observe that the algebraic variety is

V := {(C,A+BC), (D,A+BD)} .

To establish the consistency of M(2), assume p ∈ P4 and p|V ≡ 0. Also
let q1(x, y) := y− (A+Bx) and q2(x, y) := x2 − (C +D)x+CD. Since
M(2) is (RG) and the column relations in M(2) allow us to get

Λ(xiyjq1) = 0 for 0 ≤ i+ j ≤ 3;(5.1)

Λ(xkyℓq2) = 0 for 0 ≤ k + ℓ ≤ 2.(5.2)

Using the Division Algorithm, we may write

p(x, y) = p1(x, y)q1(x, y) + p2(x, y)q2(x, y) + r(x, y)

where p1(x, y) ∈ P3, p2(x, y) ∈ P2, and r(x, y) := α0 + α1x for some
α0, α1 ∈ R. Since r(C,A + BC) = 0 and r(D,A + BD) = 0, it follows
that α0 = α1 = 0 under the condition C ̸= D. This shows r is the
zero polynomial and the consistency of M(2) is obtained by (5.1) and
(5.2).

5.3. The Case When rank M(2) = 3rank M(2) = 3rank M(2) = 3

The (RG)-condition about M(2) is essential so that we may have
only 3 possibilities; the basis of the column space would be one of the
following:

{1, X, Y } ,
{
1, Y, Y 2

}
,

{
1, X,X2

}
.

The first case is covered by the proceeding result:

Theorem 5.2. Let {1, X, Y } be the basis of CM(2). Then M(2) has a
measure supported in V(M(2)) if and only if M(2) satisfies the variety
condition.
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Proof. The forward implication is obvious; we begin with denoting
the conic column relation in M(2) as:

q1(X,Y ) ≡ X2 + ℓ1(X,Y ) = 0;

q2(X,Y ) ≡ XY + ℓ2(X,Y ) = 0;

q3(X,Y ) ≡ Y 2 + ℓ3(X,Y ) = 0,

where ℓi(x, y)’s are some linear polynomials. Suppose p ∈ P4 and p|V ≡
0, where V(M(2)) is the algebraic variety of M(n). Since M(2) satisfies
the variety condition, we know 3 ≤ card V. Now the Division Algorithm
enables us to get

p(x, y) = p1(x, y)q1(x, y) + p2(x, y)q2(x, y) + p3(x, y)q3(x, y) + r(x, y),

where p1, p2, p3 ∈ P2, and r(x, y) := α0 + α1x + α2y for some real
numbers α0, α1, and α2. Since p|V ≡ 0 if and only if r|V ≡ 0, it follows
that the line r(x, y) = 0 must intersect with conic qi(x, y) = 0’s at least
3 different points; however, it cannot happen by the Bézout Theorem.
Thus, we conclude that r is the zero polynomial and the consistency is
naturally gained by the 3 column relations in M(2).

We then observe the later two cases are equivalent through the degree-
one transformation of interchanging x and y. We just need to cover the
second case:

Theorem 5.3. Let
{
1, Y, Y 2

}
be the basis of CM(2). Then M(2)

has a measure supported in V(M(2)) if and only if M(2) is recursively
generated.

Proof. It suffices to prove the backward implication. Because M(2)
is recursively generated, we know the column relations in M(2) should
be:

q1(X,Y ) ≡ X −A1 = 0;

q2(X,Y ) ≡ X2 −A21 = 0;

q3(X,Y ) ≡ XY −AY = 0,

where A is a real number. The algebraic variety V(M(2)) is the set of
all the points on the line x = A; if p ∈ P4 and p|V ≡ 0, then application
of the Division Algorithm gives us

p(x, y) = p1(x, y)q1(x, y) + p2(x, y)q2(x, y) + p3(x, y)q3(x, y) + r(x, y),

where p1∈P3, p2, p3 ∈ P2, and r(x, y) := α0 +α1y+α2y
2 +α3y

3 +α4y
4

for some real numbers α0, α1, . . . , α4. The graph of the remainder r also
contains all the points on x = A; however, it is impossible if r has a
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nonzero coefficient. Thus, we see r must be the zero polynomial. The
consistency just follows from the 3 column relations in M(2).

5.4. The Case When rank M(2) = 4rank M(2) = 4rank M(2) = 4

Each case in the category has exactly 2 conic column relations. We
know that the possible bases of CM(2) are:

B1 :=
{
1, X, Y,X2

}
, B2 := {1, X, Y,XY } , B3 :=

{
1, X, Y, Y 2

}
.

Unless the two conics of the column relations have a common factor,
it follows from Bézout’s Theorem that card V ≤ 4. Thus, it is necessary
to get exactly 4 points in the variety to satisfy the variety condition;
indeed, the problem becomes extremal (r = v). The possibility of an
infinite variety is in the cases of B1 and B3 only. M(2) with the basis B2

cannot admit a variety with infinitely many points (we will verify this
in the proof of Theorem 5.6). Notice also that the cases of B1 and B3

are equivalent under the degree-one transformation of interchanging x
and y; hence, it is enough to cover the cases with B1 and B2.

Theorem 5.4. If B1 is the basis of CM(2) and card V = ∞, then
M(2) has a measure supported in V(M(2)).

Proof. In oder to have an infinite variety, the polynomials of the conic
column relations must be factored as a pair of lines and share a line as
intersection. If p1(X,Y ) = 0 and p2(X,Y ) = 0 are the two column
relations, then we may write the associated polynomials as

p1(x, y) = (y+ ax+ b)(y+ cx+ d) and p2(x, y) = (y+ ax+ b)(x+ e)

for some a, b, c, d, e ∈ R. Note that since the leading term of one qua-
dratic polynomial has to be xy, the second factor of p2 does not have
any y variable. We then use the invariance of the moment problem
under a degree-one transformation and deal with an simpler, equiva-
lent problem; if we take x̃ = x and ỹ = y + ax + b, then we can

show that the equivalent moment matrix M̃(2) has the column rela-
tions, Y 2 + (−a + c)XY + (−b + d)Y = 0 and XY + eY = 0 (via
this transformation we may consider the common factor as y instead
of y + ax + b). This transition enables us to assume that the algebraic
variety is the set of all the points in y = 0 and (−e, (c − a)e − d + b)
which stays outside of y = 0; that is, (c− a)e− d+ b ̸= 0.

Now let q̃1(x, y) := y2+(−a+c)xy+(−b+d)y and q̃2(x, y) := xy+ey.

For checking the consistency, suppose p ∈ P4 and p|Ṽ ≡ 0, where Ṽ is
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the algebraic variety of M̃(n). The Division Algorithm allows us to have
the representation of p:

p(x, y) = p1(x, y)q̃1(x, y) + p2(x, y)q̃2(x, y) + r(x, y),

where p1, p2 ∈ P2, and r(x, y) := α0+α1x+α2x
2+α3x

3+α4x
4+α5y for

α0, . . . , α5 ∈ R. Since r(0, 0) = 0, we determine α0 = 0. The polynomial
r(x, y) is divisible by y, and hence α1 = α2 = α3 = α4 = 0; the final
request is that r(−e, (c−a)e−d+b)) = α5[(c−a)e−d+b] = 0. Thus, α5

is zero and r is indeed the zero polynomial. The consistency is checked
by the two column relations promptly.

For the case with the basis B1 and card V = 4, we follow a similar ar-
gument in Theorem 5.4. Let us write the column relations as p1(X,Y ) =
XY −a01−a1X−a2Y −a3X

2 and p2(X,Y ) = Y 2−b01−b1X−b2Y −b3X
2

for a0, . . . , a3, b0, . . . , b3 ∈ R. Assume p ∈ P4 and p|V ≡ 0. Through the
Division Algorithm, we get

p(x, y) = p1(x, y)q1(x, y) + p2(x, y)q2(x, y) + r(x, y),

where p1, p2 ∈ P2, and r(x, y) := α0 + α1x+ α2y + α3x
2 + α4x

3 + α5x
4

for α0, . . . , α5 ∈ R.
Suppose the variety V(M(2)) is explicitly known by solving the sys-

tem p1(x, y) = 0 and p2(x, y) = 0, say V = {(x1, y1), (x2, y2), (x3, y3),
(x4, y4)}.We label the columns of the Vandermonde matrix EV of V(M(2))
as we did for M(2). Because M(2) is necessarily to be weakly consistent,
the restriction of EV to a basis of CM(2) is invertible by Lemma 3.3; that
is, the first four columns in EV are linearly independent. We now get,
for some ki, ℓi and i = 1, . . . , 4:
(5.3)

E ′
V :=


1 x1 y1 x21 x31 x41
1 x2 y2 x22 x32 x42
1 x3 y3 x23 x33 x43
1 x4 y4 x24 x34 x44

 row reduction //


1 0 0 0 k1 ℓ1
0 1 0 0 k2 ℓ2
0 0 1 0 k3 ℓ3
0 0 0 1 k4 ℓ4

 .

For r to vanish on V(M(2)), the equation E ′
V(α0, α1, α2, α3, α4, α5)

T =
0 has at least one solution; equivalently, r can be rewritten as

r(x, y) = −(k1α4 + ℓ1α5)− (k2α4 + ℓ2α5)x− (k3α4 + ℓ3α5)y(5.4)

−(k4α4 + ℓ4α5)x
2 + α4x

3 + α5x
4,

where α4 and α5 are real parameters. Beyond conics arising from the
column relations, we establish the consistency by testing Λ(r) = 0. In-
deed, we just now proved the next result:
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Theorem 5.5. Suppose B1 is the basis of CM(2) and card V = 4.
Then M(2) has a measure supported in V(M(2)) if and only if the
restriction of the Vandermonde matrix EV to a basis of CM(2) is invertible
and Λ(r) = 0, where r is the polynomial in (5.4).

The final case of rank M(2) = 4 is to be solved:

Theorem 5.6. Let B2 be the basis of CM(2). Suppose M(2) satisfies
the variety condition; that is, card V(M(2)) = 4. Then M(2) has
a measure supported in V(M(2)) if and only if the restriction of the
Vandermonde matrix EV to a basis of CM(2) is invertible.

Proof. Since the consistency implies weak the consistency which is
equivalent to invertibility of the restricted Vandermonde matrix, the
backward implication is clear. For the other implication, observe that
the two conic column relations in M(2) should be:

q1(X,Y ) ≡ X2 + ℓ1(X,Y ) = 0;

q2(X,Y ) ≡ Y 2 +AXY + ℓ2(X,Y ) = 0,

where ℓ1 and ℓ2 are some linear polynomials, and A ∈ R. We now claim
that the algebraic variety must be finite. For, suppose not. Then the
two polynomials share a line as intersection. Since the leading term of
q2 is y2, its two factors must have the term y. If q1 is reducible and one
of its factor has the term y, then it is impossible to avoid the term xy
in q1. This is a contradiction. By the Bézout’s Theorem, we know that
card V ≤ 4.

Now set p ∈ P4 and p|V ≡ 0; use the Division Algorithm to represent
p as:

p(x, y) = p1(x, y)q1(x, y) + p2(x, y)q2(x, y) + r(x, y),

where p1, p2 ∈ P2, and r(x, y) := α0+α1x+α2y+α3xy for α0, . . . , α3 ∈
R. Set the variety V = {(si, ti)}4i=1; the equations r(si, ti) = 0 for
i = 1, . . . , 4 are written as a matrix multiplication:

(5.5)


1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4



α0

α1

α2

α3

 =


0
0
0
0


Since the above Vandermonde matrix is invertible, the zero vector is
the unique solution of the matrix equation; in other words, r(x, y) ≡
0. For checking the consistency of M(2), we just need to take care
of multiples of q1 and q2; the two column relations guarantee all the
required tests.
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5.5. The Case When rank M(2) = 5rank M(2) = 5rank M(2) = 5 or 666

Note that if M(2) has a linear column relation and rank M(2) = 5,
then M(2) is not recursively generated; thus, it has no measure sup-
ported in V(M(2)). M(2) necessarily has a conic column relation to
admit a measure and the next result shows it is enough.

Theorem 5.7. If a unique column relation in M(2) is a conic column
relation, then M(2) has a measure supported in V(M(2)).

Proof. If M(2) ≡ M(2)(β) has a single conic column relation and the
associated polynomial is irreducible, then the consistency of the moment
sequence is simply obtained by Lemma 3.5. On the other hand, if M(2)
has a reducible column relation p(X,Y ) = 0, then the conic p(x, y) = 0
has two linear factors. Suppose r(x, y) ∈ P4 with r|V ≡ 0. Since both
factors of p(x, y) are necessary in the representation of the algebraic
variety V = Z(p), it follows from [23, Proposition 3.3] that there exists
q(x, y) ∈ R[x, y] such that r = pq, and hence deg q = deg r − deg p ≤ n.
Now we observe Λβ(r) = Λβ(pq) = ⟨M(2)p̂, q̂⟩ = ⟨0, q̂⟩ = 0, which
proves that M(2) is consistent.

For the invertible M(2), as explained in the proof of Theorem 4.1
(iii), the moment sequence is naturally consistent.

6. Conclusions and Remarks

In this article, we have presented complete solutions of GTMP when
n = 1 or 2. If n ≥ 3, then the problems become much more difficult
to handle like TMP; moreover, a solution seems to require a numerical
condition as in Theorem 5.5 or solutions of TMP for n = 3 [12, 13]. It is
not obvious how and why such a numerical condition contributes for the
existence of a measure; we leave it for future study. Moreover, we may
consider problems of higher order. The author believes that the method
used in solutions of extremal sextic TMP in [12, 13] could be applicable
for the purpose of general cases.

Before we conclude the article, several unanswered questions will be
collected in this section. One important part of moment problems is to
determine uniqueness of a measure for a moment sequence; if a moment
sequence has a unique measure, then it is said to be determinate. We
thus naturally ask:

Question 6.1. When does M(n) have a unique measure supported
in V(M(n))?
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An answer to this question for TMP was flatness of a positive M(n).
However, most examples in this note (except the cases of rank M(1) =
rank M(2) = 1) have infinitely many measures. We may conjecture
that M(n) is not determinate of rank M(n) > 1.

The next is related to the number and the location of atoms of a
measure µ; we have a bound of card supp µ suggested in Section 2, but
it seems to be somewhat blunt. All the examples considered so far have
the bound, rank M(n), which is dominated by the cardinality of the
algebraic variety V. Being relevant to TMP, we may consider:

Question 6.2. For a minimal measure µ for M(n), can we have the
inequality, card supp µ ≤ rank M(n)?

As we saw an example in Section 2.2, the number of atoms of a
measure can be strictly greater than rank M(n) and the atoms lie in
somewhere other than the algebraic variety. However, we might ask
that:

Question 6.3. If µ is a minimal measure forM(n), then does V(M(n))
contain supp µ?
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